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IMAGE SAMPLING AND INTERPOLATION

I. INTRODUCTION

This report records the results of a 3-month study during the summer of 1980 made
by the author while on temporary assignment to the Office of Naval Research. The study
was begun at the suggestion of Dr. William J. Condell, Jr., Head of the Physics Program at
ONR.

This study includes a review of spline functions, in particular B-splines, and a consid-
eration of their use for the foveal sampling of images. Such a study is of interest to the
Navy. In many applications of image sampling, as for example in a missile warhead, only a
very few samples can be handled. Thus methods of taking these samples in a more efficient
manner are necessary. It was thought that B-splines might be useful because they may be
used for interpolating data not sampled at uniformly spaced points. This study confirms
this idea but indicates that even when using splines, uniformly spaced data make numerical
interpolation more efficient.

Because of the limited time available and the newness of the material on B-splines to
the author, all of the possibilities could not be fully developed. In particular no actual nu-
merical work with images was done. Without actual experience with images no study of
image sampling and interpolation can be taken very far. The scope of this report is therefore
limited. In it the author reviews the well-known Nyquist sampling theorem and points out
its drawbacks in Section II in order to motivate the use of splines. In Section III the basic
properties of B-splines are introduced in a very different manner than is usual in the litera-
ture. While this material lacks rigor it should be much simpler for the nonmathematician to
follow. The use of the so called pp-representation and B-representation are presented in
Section IV as extensions of the familiar cubic spline methods. And finally in Section V a
very brief account is given as to how all of this might be applied to image sampling and the
foveal problem. The conclusions are briefly stated in Section VI.

II. SAMPLING AND INTERPOLATION OF BANDLIMITED IMAGES

An image is defined in this report as a two-dimensional distribution of intensity de-
scribed by the function I(xy). This intensity distribution may be a primary image obtained
from light scattered directly from a scene say as in the back focal plane of a camera, or it
may be a secondary image formed by light using an electronic or photographic recording
of the primary image.

If the function I(xy) has finite support such that

I(x,y)=Oif IxI>aorlyl>b, (2.1)

Manuscript submitted November 19, 1980.
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then the image is bounded. All images formed by practical instruments are bounded. If,
on the other hand, the function I(xy) has a Fourier transform

I (Gd) = JJI(xY) e-2 7ri( x+?7Y)dxdy, (2.2)

which has finite support, i.e.,

I (tin) = 0if I1> a or iriI> , (2.3)

then the image is bandlimited. By the Paley-Wiener theorem of Fourier analysis an image
cannot be both bounded and bandlimited [1]. However, this theorem reflects a basic
difficulty in the simple mathematical model (or in achieving ideal optical instruments -

depending on your point of view) because images do appear to be both bounded and band-
limited.

Images are bounded because all imaging systems contain apertures which block light
outside of some finite area in the image plane. Images are bandlimited because all imaging
systems have a finite resolving power and can in no case resolve image detail smaller than
about a wavelength of light. In the following we assume that an image is either bandlimited
or that it is bounded but not both so that we may use this mathematical model.

We will treat the case of a linear stationary imaging system. Thus a bounded image can
be represented by

I(x,y) = fh(x' - xy'- y) O (xy') dxdy' if Ixl < a and ly j < b, (2.4)
-00

=0 otherwise,

where h(xy) is the spread function (the image of a point), and O(xy) is an unbounded and
unbandlimited "perfect" image. In Eq. (2.4) I(x y) is bounded but not bandlimited. We can
represent a bandlimited image by

00

I'(xy) = ffh(x' - xy- y) O'(x y')dx'dy'for all x and y, (2.5)

where

0'(x',y') O(x',y') if IxI < a and lyI < b,

= 0 otherwise.

Now I'(x,y) represents an image that is bandlimited but not bounded. In the rest of this
section we will consider the bandlimited image described by I'(x,y).
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To record an image it is often convenient (or necessary) to sample it. For example,
a vidicon samples an image continuously along horizontal raster lines so that a two-dimen-
sional spatial function I(xy) can be represented by a one-dimensional temporal function
v(t), the video signal. As a second example, a photographic emulsion contains silver halide
crystals which collect light and are converted by development into free silver. Thus the
crystals sample the image intensity I(xy) in a complicated manner. An image can be sam-
pled in many other ways that can be selected at will by the instrument designer. A con-
venient choice for many applications [2] is to sample the image over. a rectangular mesh, i.e.,

N,M
I (xy) = E I'(xy)5(x- nd)6b(y - mdY) (2.6)

n=-N
m=-M

so that the sampled image is represented by the discrete data values In m where

I (xy) =Inm if x = ndx, y = mdy, (2.7)

= 0 otherwise,

where dx , dy are the constant sampling intervals, and where 6 represents the Dirac delta
function. Data sampled in this way are often referred to as gridded data in the interpola-
tion literature, and we will use this expression in this report.

To record or transmit the sampled image we need only deal with the sequence of real
numbers Inm rather than the continuous function I'(x,y). This data reduction is essential
for many operations on the image as, for example, digital processing by a computer.

It is critically important to the accurate and efficient representation of the image that
the sampling intervals have the values

d and dy2 (2.8)

These equations are equivalent to the Nyquist criterion which states that a bandlimited
signal must be sampled at uniformly spaced points separated by half the period of the
highest Fourier component in the spectrum of the signal. It is shown in Appendix A that
if the values of dx and dy are larger than specified by Eq. (2.8), then aliasing errors occur
which prevent accurate recovery of the image from the sampled data. If, on the other hand,
dx and dy are made smaller than specified by Eq. (2.8), then the extra samples obtained
are wasted because no additional information about the image is obtained.

If the image is bandlimited and properly sampled, then as shown in Appendix A the
image can be recovered exactly by using the formula

,M sind (x- nd,) sin~d (Y md
I(xY - M (x- I ) (Y- Y) . (2.9)

N-00n__Nm (x -ndx) (y -md)
M-* 0 0 mM=-
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We will call this sampling and interpolation procedure Nyquist sampling. Nyquist sampling
allows the image I'(x,y) to be recovered at every point from just the sampled values I, m.
Clearly some arbitrary function f(x,y) contains much more information than any discrete,
finite set of sampled values fnm. Therefore we must conclude from Eq. (2.9) that the con-
dition that I' (x,y) be bandlimited is a very strong condition which greatly limits the infor-
mation content of this function.

Often it is not possible to properly sample an image. Usually the number of samples
that can be taken, stored, and perhaps transmitted in some fashion is very limited. So if the
image is not properly bandlimited before sampling, aliasing problems develop. This well-
known problem is discussed in Appendix A and has been examined experimentally [3]. It
appears that a badly aliased image is usually not useful. Therefore a completely different
approach to image sampling and interpolation is needed if the original image cannot be
properly bandlimited. Thus the requirement that an image be properly bandlimited is a
serious limitation for Nyquist sampling.

A second limitation to this sampling and interpolation method is that it is restricted
to gridded data. It is often more useful to employ a limited number of possible samples in
a more efficient manner as is done by the human eye. In the eye samples are taken much
more closely together over a small region near the center of the field-of-view called the
fovea than they are elsewhere. The result is that we have a much better ability to resolve
fine detail in the foveal image than elsewhere in our field of view. Samples are taken so far
apart near the edges of the field of view that we can detect little more than motion there.
In this manner our eyes make the best use of a limited number of photoreceptors.

In this report we are particularly concerned with optimizing the use of a limited num-
ber of samples. To do this using Nyquist sampling it is necessary to divide the image into
square subareas and to take gridded data from each area. The sampling intervals may be
allowed to differ from one area to another but must be the same within each area. However
there remains a serious problem. It is very difficult to individually bandlimit each subarea
of the image so that the Nyquist criterion is satisfied there. Usually the entire image must be
bandlimited in the same way. Then if the image is properly bandlimited for the most finely
sampled area, it will be aliased elsewhere, or if the image is properly bandlimited for the
least finely sampled area, the extra samples elsewhere will be wasted and the interpolated
image would be uniformly poor. Thus Nyquist sampling is not usually of much use under
these conditions.

If we cannot bandlimit an image properly so that, over every region, the image satisfies
the Nyquist criterion locally, then Nyquist sampling should not be used. Fortunately there is
a useful alternative. It is always possible to sample an image at any set of points and then to
reconstruct an estimate of the image from these data. It is not possible in general to recon-
struct the original image precisely as it is by the use of Nyquist sampling; however, it is often
possible to construct a useful approximation.

A common method for reconstructing a one-dimensional function f(x) from scattered
data (samples taken at random) is to set

f(x) = fn , where x = x , (2.10)

4
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so that at the original sample points xn the function f(x) has its original values and then to
use a draftsman's spline (a tool like a rubber ruler) to continue the data smoothly in be-
tween. This gives a much better representation of the original function than does Nyquist
sampling with serious aliasing. As a practical matter for a two-dimensional function it is
better to employ the numerical methods of fitting surfaces to scattered data. Here we rep-
resent the draftsman's tool by a piecewise polynomial "spline" function which is used to
connect the data points in a satisfactory manner.

In the following sections we introduce some of the fundamentals of spline interpola-
tion and discuss the application of these methods to image interpolation.

III. B-SPLINE FUNCTIONS

B-splines or basis splines were first introduced by Schoenberg [4] as a set of functions
defined by

Mk(t): = - J i ) eni2td (3.1)

For k = 1 it is well known to mathematical physicists that

M1(t) =FT (sin/2)) = Rect (t)

= 1 if Itl•- (3.2)
2

= 0 otherwise,

where FT represents a Fourier transform. It is also well known that by use of the con-
volution theorem Eq. (3.1) can be rewritten

[(sin(t/2) \k-i 1 F /sin(Q/2) vi
Mk M = FT t /2 / j 3/L )J (3.3)

so that Mk (t) can be built up from the Rect (t) function via k - 1 convolutions. It is clear
from this that because Rect (x) has small support (i.e., vanishes outside of the domain
- 1/2 < t < 1/2) that all of the Mk (t) built up by repeated convolution with Rect (t) will
similarly have small support (i.e., vanish outside of the domain -k/2 < t - k/2). This is one
of the most useful properties of the B-splines ([5], p. 109).

The B-splines up to cubic order are given in Fig. 3.1 for the case of uniform sampling.
Note that Mk (t) is a peacewise polynomial (pp) function of order k - 1. It is easily demon-
strated that Mk (t) is continuous with continuous derivatives up to order k - 2. Higher order
derivatives are continuous everywhere but at the break points between polynomial seg-
ments. These break points are called knots in the literature on B-splines.
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The definition of B-splines given by Eq. (3.1) holds only for the special case of an
equispaced knot sequence, that is for polynomial segments of equal length as shown in
Fig. 3.1. However, Curry and Schoenberg [6] showed that if the definition of the B-splines
is expressed in terms of the kth order divided difference as described here in Appendix B,
then the definition can be extended to an arbitrary knot sequence. This admits a much more
general class of pp-spline functions composed of polynomial segments of arbitrary length
and with discontinuities of arbitrary order at the break points between segments.

To extend B-splines to allow arbitrary knot sequences [ t1 , t2 ... tk] we redefine the
B-spline of order 1 at location i by

Bi, 1 (t) = 1 if ti 6 t 6 til '

= 0 otherwise, (3.4)

which agrees with the definition in Eq. (3.1) and then generate higher order B-splines using
the recursion relation (see Appendix B, Eq. (B.17))

t- t ti+ t
Bi'k t) B - +i k1(t) t k- t Bi+l,k-1(t) (3.5)

This is equivalent to the definition of Bi, k (t) in the mathematical literature which depends
on the rather complicated concept of the divided difference (see Appendix B). If the knot
sequence [t1 , t2 ... tR] is monotonically increasing with constant interval between knots,
Eq. (3.5) is equivalent to the definition in Eq. (3.1). Otherwise it is not.

B-splines are very important in the theory of pp-functions because they form a basis
for such functions (hence the name basis splines). Any pp-function can then be represented
as a superposition of B-splines of the form ([5], pp. 119-120):

n

fk(t) = (iBi, (t) (3.5)
i=l1

or if tj < t 6 tj+1 by

fk (t E °tBi, k (t (3.6)
i=j-k+l

where fk(t) is app spline function of order k for the arbitrary knot sequence [t1 , t2 ... td,
and

n=kQ- Lvi: (3.7)
i=2
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The knots are a sequence of points between the polynomial segments of the B-splines.
They may be coincident as indicated by the parameter vj(<k) in such a manner that at
some point t there are (k - vi) knots ti. To use a pp-function to interpolate sampled data
the knot may represent the location of data samples. They may be separated by arbitrary
intervals corresponding to nonuniform sampling intervals. The coincident knots are useful
for specifying the number of continuity conditions the pp-function satisfies over the knot
point. At a point with a single knot the pp-function and its derivatives up to the order k - 1
must be continuous over the point, but at a point with k - vi knots the pp-function will
satisfy only vi continuity conditions over the point. Multiple knots are also useful for
osculatory interpolation in which we specify data concerning derivatives as well as values of
the sampled function.

Interpolation and the use of B-splines are discussed in the following sections.

IV. INTERPOLATION IN ONE DIMENSION

The interpolation of data sampled along a single line is introduced in this section. The
more complicated two-dimensional interpolation problem which applies to images is dis-
cussed in the next section.

The best known and probably the most commonly used spline interpolation method
employs data fitting with piecewise polynomial cubic splines. The application of this
method in one dimension is clearly described in many standard works on numerical analysis
([7], p. 474-491). We will describe this method first as an introduction to the more general
methods.

For the usual pp-cubic spline interpolation a different cubic polynomial, for example

f(x) = ai(x - x,) 3 + bi(x - xi) 2 + ci(x - xi) + d, (4.1)

is fitted between each point xi(1 i 6 n) at which data have been sampled and the next
larger point xi+1 . The sample points become break points between these polynomial seg-
ments. The coefficients in each segment are determined by making restrictions on the
pp-cubic spline. The most usual conditions are that the pp-function:

(1) is continuous over the break points (n - 2 equations)

(2) gives the sampled data value at each of the break points (n equations)

(3) has continuous first and second derivatives over the break points (2(n - 2)
equations).

Thus for the n sampled data values we obtain 4n - 6 equations for the 4n - 4 coefficients
ai, bi, ci, di in Eq. (4.1). Clearly we require two additional conditions in order to specify the
coefficients. These can be made arbitrarily, for example, by specifying the derivatives of the
pp-function of each of the two end points. The 4n - 4 equations are easily reduced to n

8
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equations analytically, and solution of the remaining n equations containing the sampled -
data values reduces to inverting an n X n tridiagonal matrix using a computer.

There are several variations to pp-cubic spline interpolation that can sometimes give a
more satisfactory result in some special cases. One, of course, is to choose differently the
two arbitrary restrictions described in the last paragraph. Another is to relax the conditions
that the second derivative be continuous over the break points and instead require that the
first derivative be specified at the break points by sampled data. Clearly there is a lot of flex-
ibility to pp-interpolation. This is brought out more clearly in the generalized methods
which we will now briefly introduce.

The pp-cubic spline interpolation can be easily modified by using polynomials of
higher or lower order. Higher order polynomials of order k (cubic is k = 4) can be used to
give a pp-interpolation function which has continuous derivatives to higher order k - 2 over
the break points but at the cost of more computation. The matrix is still n X n but is no
longer tridiagonal but has k nonzero semidiagonals instead (k-diagonal). Lower order poly-
nomials greatly reduce the computations but give less smooth pp-functions.

Once the interpolation calculations have been carried out, the pp-function is stored in
the computer for use in calculating values of the function f(x) which was represented orig-
inally by the sampled data. To store a pp-representative for some function f(x) in a computer
we require ([5], p. 88)

(1) the integers k and n giving the order and number of the polynomial pieces,
respectively,

(2) the strictly increasing sequence x1 , x2 , x 3, ... XQ+1 of its breakpoints (which do
not in general have to be equally spaced), and

(3) the matrix

ai- I
Cji= - f(x) for l j 6 k, and 1 6 i 6 n

x =x.

of its (right) derivatives at the breakpoints. Then the pp-function can be used to represent
the sampled function over each domain xi < x-< xi+ 1 by

k-I (X - OM 42
x) = E Cm+ii m! (4.2)

This is nothing but a generalization from the cubic spline representation to splines of k order
where for k = 4 we have ai = C4 j/6, by = C3 j/2,ci = C2 j, di = Cli so that Eqs. (4.1) and (4.2)
become the same. Clearly the use of higher order splines provides greater flexibility for
improving data interpolation but at the cost of greater computation.

9
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Still greater flexibility can be obtained by the use of an entirely different representa-
tion based on the B-splines introduced in the last section. In interpolating a sequence of
data points, B-splines (for example as shown in Fig. 3.1, if the data points are equally spaced)
of some fixed order k are fitted over k successive knots. Each of the knots (except the free
knots discussed later) can represent a sampled data point. The B-splines unlike the poly-
nomial segments described above are allowed to overlap in such a manner that a new B-spline
begins at each knot location. Thus we have a rather different sort of interpolation method
with additional redundancy which leads to greater flexibility in application.

The calculation of a B-representation for a sampled function f(x) reduces to the inver-
sion of a matrix by a computer. The matrix is again k-diagonal; however, it is now of much
higher order due to the extra coefficients required to specify the overlapping B-splines. The
order of the matrix is now n X n where

n=kk- Evi, (4.3)

where k is the order of the B-splines, Q is the number of actual data samples, and vi is the
order of continuity over the knot points (i.e., vi = 0, no continuity; v = 1, continuous f(x)
only; v, = 2, continuous f(x) and first derivative of f(x); etc.).

Once the B-representation has been calculated from the sampled data it is stored in the
computer. Then the B-representation for some originally sampled function f(x) consists of
([5], p. 119):

(1) the integers k and n (n = kQ - Zvi) giving the order of the B-spline segments in the
interpolating function and the number of linear parameters required to represent the
function,

(2) the vector

ti < t2 < t3 < *-- < tk < t1 < t2< *-- < 4Q+1 -< tn+1 < - n+k 44

containing the knots (possibly partially coincident) in increasing order, and,

(3) the vector ofi, 1 < i < n of the coefficients of f with respect to the B-spline basis
as shown in Eq. (3.6).

The knots t1 to tk+I can be actual sample points whereas the free knots t1 to tk and tn+I
to tn+k are arbitrary and can be chosen to optimize the interpolation. The proper choice of
knots is a rather complicated subject ([5], Chap. XIII) that we will not attempt to cover at
the level of this report. A proper understanding of this subject gives the computer program-
mer great flexibility in controlling the properties of the interpolating function.

10
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Once the calculations have been carried out and the B-representation data stored in the
computer then the value of the sampled function f(x) can be calculated between each pair

of knots xi < x < xi,, by use of Eq. (3.6), i.e.,

jX '~~kX 45
i=j-k+l

In this manner we can calculate a value of f(x) for each point within the domain bounded
by the data samples. At the sample points we recover the sampled values and in between we
get a smoothly continued set of values which are determined by the data and by the knots
chosen by the programmer.

If the original sampled function contains noise such that

f&) = g(x) + n(x) (4.6)

where g(x) is the signal and n(x) is the noise, then spline interpolation of samples from f(x)
can often be chosen such that the resulting estimate of ffix) is smoothed. For this we choose
the interpolation knots to be at the sample points, and we employ spline interpolation with
an auxiliary condition that the pp-function minimizes a roughness expression..

In cubic spline interpolation, for example, to smooth the sampled data we replace the

usual conditions with the condition that for n sample points the pp-function:

(1) is continuous over the break points (n - 2 equations),

(2) gives values a, at the break points (n equations),

(3) gives continuous first derivatives at the break points (n - 2 equations),

(4) gives zero second derivatives at the end points (2 equations),

(5) gives values cj for the second derivatives at the break points (n - 2 equations).

This gives the system of 4n - 4 equations required to determine the coefficient in Eq. (4.1).
The 2n parameters aj and ci are determined by requiring that the roughness expression
([5], p. 238)

2
y/ Y- ai 4(1 - ) n- I

Ri~~p 6y= / + Z~A Ci( c+ cc + C2
R~~(p~~~p i3=1 ii+i i+I (4.7)

be minimized for some value of p (0 < p < 1), where yi is the sampled value at the xi point,
5y, is an estimate of the variance of yi, and Ax = xi+l - xi. If we set p =0, the pp-function
is optimally smooth but inaccurate, but if we set p = 1, the pp-function is accurate (i.e.,
aj = yi) but not smooth. In practice a value of p is chosen to give the best trade-off in the
opinion of the programmer.
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In the next section we consider the extension of one-dimensional interpolation to
images.

V. IMAGE INTERPOLATION

The extension of the interpolation methods introduced in the last section from one to
two dimensions is not trivial except for gridded data. We are particularly interested in inter-
polating scattered data in order to implement foveal sampling. That is, we would like to
interpolate data which were sampled at points in the original image that were much closer
together over the foveal region than outside of it as discussed in Section II. Thus we will
consider scattered data first.

Consider an image which has been sampled in the following manner. Let a general
curvilinear, orthogonal, two-dimensional coordinate system span the image plane which is
assumed to be finite but of arbitrary shape. The coordinate curves must describe a pattern
of lines which intersect at right angles as shown in Fig. 5.1. The data samples are taken from
the image at points t = ti along curves of constant 7 = qj. We take tij, Hi to be closely spaced
in the foveal region and more widely spaced elsewhere. An example of a set of such sam-
pling points is shown in Fig. 5.2. In this example only 80 samples are shown; however, to
sample this area with gridded data and at the foveal sampling rate would require 144
samples. We have reduced the number of samples 44% and maintained the foveal resolution,
but at a cost. We cannot precisely recover the image.

To recover an approximation to the image by using the sampled data we employ one-
dimensional spline interpolation first along the curves of constant t = ti and then, using the
interpolated values, along all required curves of constant 17. In this manner an estimate of
I(Q, q) at any point over the image can be recovered. Since the accuracy of the estimate at
a point will improve as the point nears a sampling point, the approximation to the image
will be more accurate over the foveal region where the sampling points are closer together.

Fig. 5.1 - Coordinate curves on a portion of the image plane

12
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sions. A general review article on this subject was published by Schumaker '18]. The general
problem of two-dimensional spline interpolation has not been developed as well as in one
dimension. It is always possible to use a two-dimensional pp-function over each polygon-
shaped region bounded by nearest sample points.- In general, the calculation of coefficients
representing the pp-function cannot be computed very efficiently. The methods used de-
pend on the geometry of the sampling points. For gridded data the pp-function reduces to
the tensor product of two one-dimensional pp-functions and the calculation of the coef-
ficients becomes particularly efficient. Thus there is a distinct advantage to be had using
gridded data ([5], p. 332, [8], p. 218).

To take advantage of the numerical efficiency of spline interpolation of gridded data
and at the same time make more efficient use of a limited number of samples we will
consider again the foveal sampling approach described in Section II. Let the image plane be
decomposed into rectangular subareas. Each area is sampled using gridded data, but the
sampling intervals d, and dy in Eq. (2.6) can be chosen differently in different subareas.
Over the subareas where high resolution will be required we make dx and dy small, whereas
over regions where lower resolution is adequate we make dx and dy proportionally larger.
Since we intend using spl ine~interpolation, the image need not be properly bandlimited
within each subarea.

An estimate of the image is recovered from the samples in each subarea by the use of
surface spline functions given by

Bij(x,y) = Bi, k(x)B j,k(y) (5.1)

13
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where Bi k(x) and Bjk(y) are defined in Eq. (3.5) ([8], Eq. (3.30)). These splines are super-
imposed to yield a pp-function interpolating the data as given by

I(XY) = E u 1jB 1j(xy) X (5.2)
QJ

in which the oai coefficients are to be computed in a manner very similar to computation in
the one -dimensional case of the last section. Computer programs exist for two-dimensional
bicubic interpolation ([8] , p. 221). The computation of the aij coefficients can be carried
out more efficiently than by straightforward extension of the one-dimensional method to
two dimensions ([5], p. 343). Some simple experiments with cubic spline interpolation of
image data were done by Hou and Andrews [9,10], but their work was limited to equi-
spaced data taken at the knots. Much more experimental work should be done to develop
and extend this as a useful technique.

VI. CONCLUSIONS

The conclusions reached in this study can be stated very simply. The best method of
sampling an image is by the use of Nyquist samples provided the image is properly band-
limited and gridded data are used. If the number of samples that are allowed is very limited,
then the best method is to divide the image into subareas of gridded data. If the image can
be properly bandlimited within each subarea, then again Nyquist sampling is best, but if
the image cannot be properly bandlimited, then spline interpolation is better.

These conclusions do not hold for some unusual situations like, for example, the ex-
treme case of absolute minimum samples and unlimited computer capability where the more
general use of scattered data and general spline interpolation is probably nearer to optimum.
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Appendix A

THE SAMPLING THEOREM

Consider a continuous function f(x) defined for every x within the domain
< x < o-. We can represent the sampling of this function by multiplying f(x) by a Dirac

Comb, i.e.,

00

f (x)= E f(x)e5(x- nd) (A.1)
n =- 00

where d is the distance between the samples, and from Eq. (A.1) we see that

f (x) a f(x) if x is an integer multiple of d, (A.2)

= 0 otherwise,

is a collection of samples. This operation is illustrated by Fig. A.1.

f(X)

f (X)

-5d -4d -3d -2d -d 0 d 2d 3d 4d 5d i

Fig. A.1 - Sampled data f(x)

To transmit the sampled function [ (x) we need only send the values of f(x) for
x = nd as a time-ordered sequence of numbers. At the receiving end we want to reconstruct
the function f(x) from these numbers as well as we can. Thus we require the inverse of
Eq. (A.1) which gives f(x) as a function of f (x).

To invert Eq. (A.1) we first take its Fourier transform, i.e.,

00 co

F(v) = f E f(x)6(x - nd) e2 piVxdx
oo n=-

00 0

E 10f(x)5(x - nd) e2
7rivxdx (A.3)

n =-0 foo o

0-0

= F~v)Q E e2irivnd
n =- 00
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where we interchanged the orders of integration and summation, then used convolution
theorem to remove f(x) from the kernel of the integral and finally carried out the integra-
tion using the sifting property of the Dirac delta function. Consider the summation in
Eq. (A.3) as a function of v. For v = m/d (m = any integer) we have

e27rimn - 00 (A.4)
00

n =- 00

However if v : mId, we have instead

00

E e2 rivnd o 0,
n=-00

(A.5)

since e2 llix averages to zero. Thus, we have from Eq. (A.3)

00

F(v) = F(1)E) E (v - m/d),
m =- 00

(A.6)

which represents the frequency spectrum F(v) of the original function f(x) convolved with
another Dirac Comb with a spacing inversely proportional to d. This is shown in Fig. A.2. If
the original function was bandlimited before sampling such that F(v) = 0 outside of the
domain - 1/2d 6 v < 1/2d, then the various orders in this figure do not overlap which is the
case as shown. Then to remove the effect of sampling we need only select the central order
by multiplying F(v) by a Rect function in the manner

F(v) = F(v) Rect (vd)
1

= F(P) if JvI•< 
2d 

(A.7)

= 0 otherwise .

I---

-2/d -1/d 0

FTv)

. Rect(vd)

\IIA
l/d 2d

Fig. A.2 - Spectrum of sampled data F(P)
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Taking the Fourier transform of Eq. (A.7) and substituting from Eq. (A.1) we have

1/2d
f(x)= f (x)69 j~l 2 d e- 27Tivxdx

f1/2d

sin ( -)

= f (x) (A.8)
7rx

0.0 sin [ -(x - nd)]
= E f(nd) (I d)

Equation (A.8) shows tlhat we can reconstruct the function f(x) for every x from just the
sampled values at x = nd by convolving the samples with a sinc function spline. This is the
usual sampling theorem. If the original function f(x) was not bandlimited as assumed in
Fig. A.2 so that the orders overlap as shown in Fig. A.3, then the spectrum of f(x) is not
simply repeated as before but high frequencies from one order are confused as lower fre-
quencies by the next order. If we attempt to use the interpolation formula in Eq. (A.8), we
obtain the function f'(x) with the spectrum shown in Fig. A.4. In the region of overlap the
frequencies are given by

F '(v) = F(P) + F(v - (IId)) . (A.9)

.t Recvvd

-1/d 0 1/d
V -

Fig. A.3 - Spectrum of sampled data F(V) showing aliasing

r Rect(vd)

I / \ T Fig. A.4 - Spectrum of the interpolated spectrum showing aliasing
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The contribution from the second term in Eq. (A.9) represents beats between the sampling
raster and the frequencies in f(x). This appears in the interpolated function f '(x) as errors
termed aliasing errors. The phenomena is called aliasing. The requirement that F(v) = 0
unless - l1d < v < l1d which avoids aliasing is equivalent to the well-known sampling criteria
that f(x) must be sampled twice per period of the highest frequency component in f(x). In
two dimensions the sampling theorem for a rectangular array of equispaced samples can be
generalized to give

00 sin (x - ndx)] sin [Idy~ - mdy)]
f&xy) >3 f(ndmd) - . (A.10)

n,m=-00 (x -nd) (y -mdY)

A similar procedure has been worked out for uniform sampling in circular coordinates which
is rather more complicated [A1,A2].
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Appendix B

B-SPLINES REPRESENTED AS A DIVIDED DIFFERENCE

There is another representation for the B-splines which is often more useful than
Eq. (3.1). To obtain this representation consider any n times differentiable function h(x)
and consider the Taylor's series representationh(x) -(x h- )(a) + ha

We consider a sequence of points on x (sometimes called a knot sequence) given by
x1 , x 2 , ... X, in which xi increases monotonically with i and with a constant interval
Ax = xi, 1 - xi. We define the first divided difference of h(x) at xi by

[i x ]h(): h(x)- h(x+) (B.2)IX i+11 ~xi - Xi 

and similarly the kth divided difference is given by ([5], p. 8, property VIII)

-; L~xi 9 r-l<+r~l ri+,] h(- )- (xi,.. Xxs-ssl -ik ()BXXi+l"...,xi+k]h(): = -x
XS - r

where x and xs are any two different points. Thus we see from Eq. (B.3) that a kth order
divided difference of h(x) can be built up by taking k first order divided differences of h(x).
The divided difference is clearly very closely connected to the derivative of the function
([5], p. 8, property VII)). If we take the nth order divided difference of Eq. (B.1), we find
that

[Xi, .Xi+,]h(-) = ... ,Xi+n] a n (- 1 h(n)(t) dt (B.4)

where we have used the property ([5], p. 6, property V)

[xi, ...IXi+n] (x - a) m= 0 if m <n, (B.5)
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which can be proven by direct application of Eq. (B.3). If we define

(x - t)n- 1 = (x - t)n- 1 , if (x - t) > 0

= 0 otherwise,

then we have (for b > x)

IX (n- t) h(n)(t)dt=
b (x- t)W 1

a@; -1)!Wn)(t)dt

and by substitution into Eq. (B.4) we find that

i ,Xi+n] h(-) = [ i...I Xi+n](;Wn)(tt1

Now if we let

h(x) = eiAX

a = -

b =oo,

Eq. (B.8) becomes

[x1 , r = (it nf [Xi, ... in- It dt

Ix J~~~-00 (n - )!
The RHS of Eq. (B.10) is just the Fourier transform of the nth divided difference of
(x - t)n - 1 and the LHS can be evaluated using (B.3) to give

i- sinX (At2 
ei ~x = it )- ( A1)'

[x .- ,x~]e n! x ) 
when Ax = xi+1 - xi, and where x = (xi+n + xi)/2 is the middle point of the sampling
domain.

By substitution from (B.11) into (B.10) we have

sin (Axt/2) n

Axt/2 

00

= n [xi, ..., x1+] (- - t)n1 ei(tx ) dt ,
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which by Fourier inversion becomes

n [xi,.-.., ]( t)n- 1 = 2 , it tdt (B.13)Xi~n] + 2ir .L0 /2 e~

where we have rescaled x so that Ax = 1 and x = 0. By comparison of Eq. (B.13) with
Eq. (3.1) we have

Mk(t) = k[xi , Xl+k] ( - t)k 1 (B.14)

the kth spline is the kth divided difference of the function k(x - t)k- 1. This is the relation
that is almost always used in the mathematical literature to define the B-splines.

Although the original definition of B-splines as given in Eq. (3.1) holds only for a
sequence of equally spaced knots the definition in Eq. (B.14) can be generalized to an
arbitrary knot sequence ([5], p. 108), i.e.,

Bi,k(t) = (Ti+k - Ti)[FTi. .... T.+k0j- - t)k 1 (B.15)

where the knot sequence Ti, ri+1, ...,ri+k are arbitrary points on a line (in any order, with
any spacing, and possibly with repeated values).

By applying Leibniz' formula for the kth divided difference of a product to the partic-
ular product

(t-_ X)+- I = (t-_ X)(t - X)k-2 (.6

we can show ([5], p. 130) that the generalized B-splines obey the recurrence relation

t- ti ti+k t
Bik(t) = Bi k- 1 (X) + tBi+ . (B.17)

ti+k- 1 j+k i t+1

From Eq. (B.17) and the evident fact (from Eq. (B.15)) that

Bi 1 (t) = 1 if ti < t < tj+1

= 0 otherwise, (B.18)

we have a simple way of generating the B-splines in a computer. Because of the complexities
of dealing with divided differences we use Eqs. (B.17) and (B.18) to define generalized
B-splines in this report.
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